Search results for " Virology & Host Pathogen Interaction"

showing 2 items of 2 documents

Flower lose, a cell fitness marker, predicts COVID‐19 prognosis

2021

Abstract Risk stratification of COVID‐19 patients is essential for pandemic management. Changes in the cell fitness marker, hFwe‐Lose, can precede the host immune response to infection, potentially making such a biomarker an earlier triage tool. Here, we evaluate whether hFwe‐Lose gene expression can outperform conventional methods in predicting outcomes (e.g., death and hospitalization) in COVID‐19 patients. We performed a post‐mortem examination of infected lung tissue in deceased COVID‐19 patients to determine hFwe‐Lose’s biological role in acute lung injury. We then performed an observational study (n = 283) to evaluate whether hFwe‐Lose expression (in nasopharyngeal samples) could accu…

OncologyMedicine (General)medicine.medical_specialtyFlowersDiseaseQH426-470Lung injurySeverity of Illness Indexcell fitnessArticleR5-920COVID‐19Internal medicineSeverity of illnessGeneticsmedicineHumansPandemicsRetrospective StudiesReceiver operating characteristicSARS-CoV-2business.industryCOVID-19Retrospective cohort studyArticlesTriageMicrobiology Virology & Host Pathogen InteractionflowerROC CurvebiomarkerMolecular MedicineBiomarker (medicine)Observational studyprognosisbusinessBiomarkersEMBO Molecular Medicine
researchProduct

Small RNA‐binding protein RapZ mediates cell envelope precursor sensing and signaling in Escherichia coli

2019

Abstract The RNA‐binding protein RapZ cooperates with small RNAs (sRNAs) GlmY and GlmZ to regulate the glmS mRNA in Escherichia coli. Enzyme GlmS synthesizes glucosamine‐6‐phosphate (GlcN6P), initiating cell envelope biosynthesis. GlmZ activates glmS expression by base‐pairing. When GlcN6P is ample, GlmZ is bound by RapZ and degraded through ribonuclease recruitment. Upon GlcN6P depletion, the decoy sRNA GlmY accumulates through a previously unknown mechanism and sequesters RapZ, suppressing GlmZ decay. This circuit ensures GlcN6P homeostasis and thereby envelope integrity. In this work, we identify RapZ as GlcN6P receptor. GlcN6P‐free RapZ stimulates phosphorylation of the two‐component sy…

Small RNAsmall regulatory RNAcell envelope precursor glucosamine‐6‐phosphatemedicine.disease_causenegative feedback loopmetabolite sensing0302 clinical medicinetwo-component system QseE-QseFRNA-binding protein RapZRNA‐binding protein RapZGlucosamine0303 health sciencesbiologyEscherichia coli ProteinsGeneral NeuroscienceRNA-Binding ProteinsArticlesRNA BiologyMicrobiology Virology & Host Pathogen InteractionReceptors AdrenergicCell biologyDNA-Binding ProteinsRNA BacterialTransfer RNAPhosphorylationCell envelopeSignal TransductionGlucose-6-PhosphateGeneral Biochemistry Genetics and Molecular BiologyArticletwo‐component system QseE‐QseF03 medical and health sciencesBacterial Proteinscell envelope precursorEscherichia colimedicineRNA MessengerRibonucleaseMolecular BiologyEscherichia coli030304 developmental biologyMessenger RNAGeneral Immunology and MicrobiologyBinding proteinsmall RNAs GlmY and GlmZGene Expression Regulation BacterialMicroreviewRNA binding proteincell envelope precursor glucosamine-6-phosphatetwo-component systembiology.proteinRNA Small Untranslated030217 neurology & neurosurgeryThe EMBO Journal
researchProduct